SINGLE-USE

PULSE 2021

A WEBINAR SERIES EXPLORING

THE BUSINESS OF SUTS

MONDAY, **MAY 17**

10:30-11:30 AM EDT

DISCUSSION OF THE BPSA GUIDANCE PAPER ON X-RAY STERILIZATION OF SINGLE-USE BIOPROCESS EQUIPMENT: PART I - INDUSTRY NEED, REQUIREMENTS AND RISK EVALUATION

SAMUEL DOREY SARTORIUS STEDIM BIOTECH

JAMES HATHCOCK PALL BIOTECH

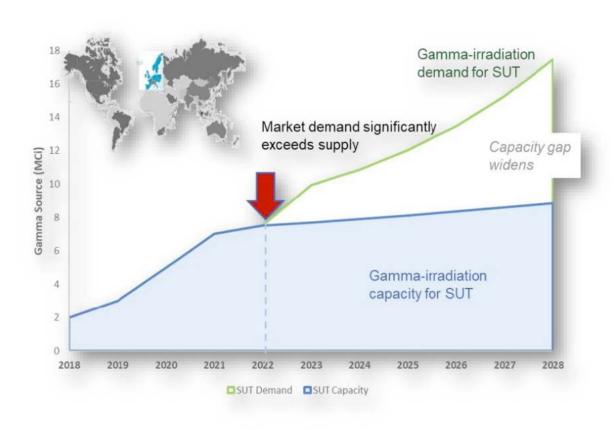
CHARLOTTE MASY GSK VACCINES

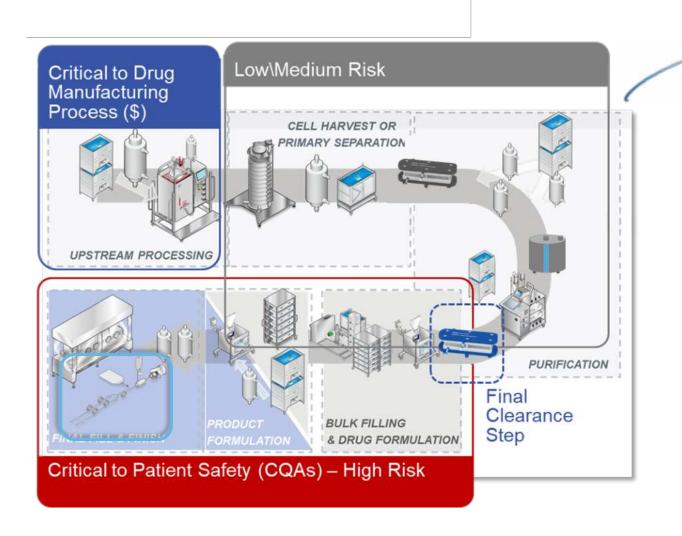
BPSA Single-Use Pulse Series Brought to You By

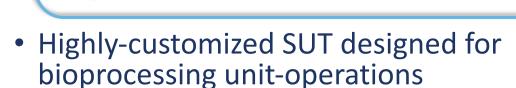
BPSA Sustaining Sponsors

Created in Cooperation With...

What is the interest of X-ray for end-user patients?

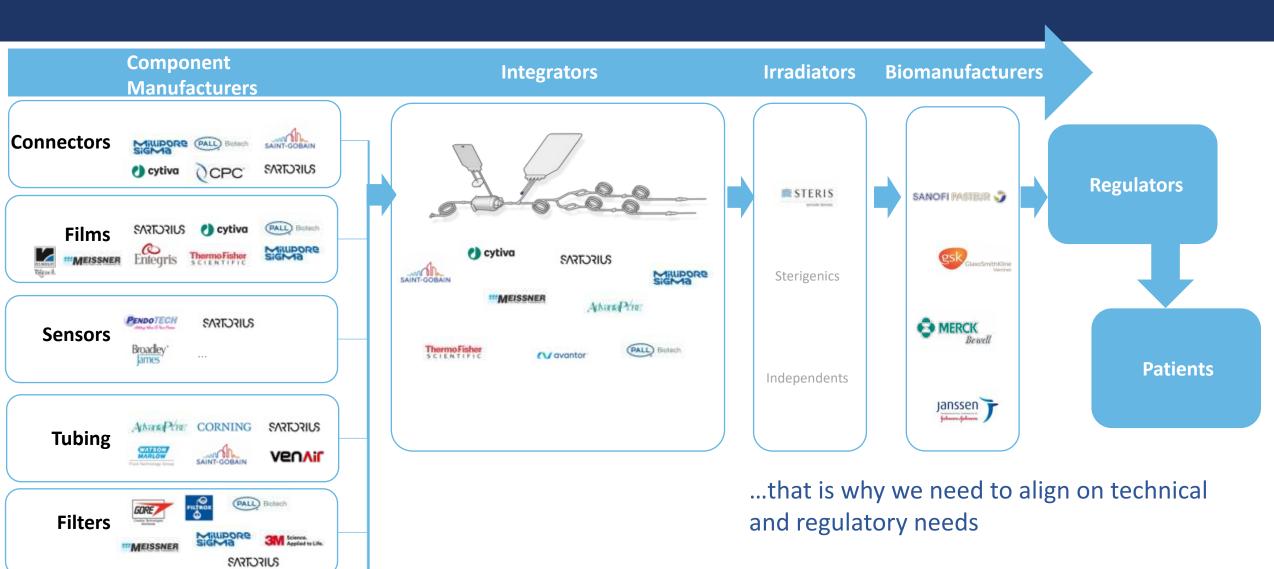



Figure 1: Analysis of gamma-irradiation market demand for SUT vs expected market capacity (Western Europe). Vertical axis indicates estimated biotech consumption of 60Co irradiation capacity. Red arrow indicates expected time in which demand starts to significantly outpace capacity.


SUT: Single Use Technology

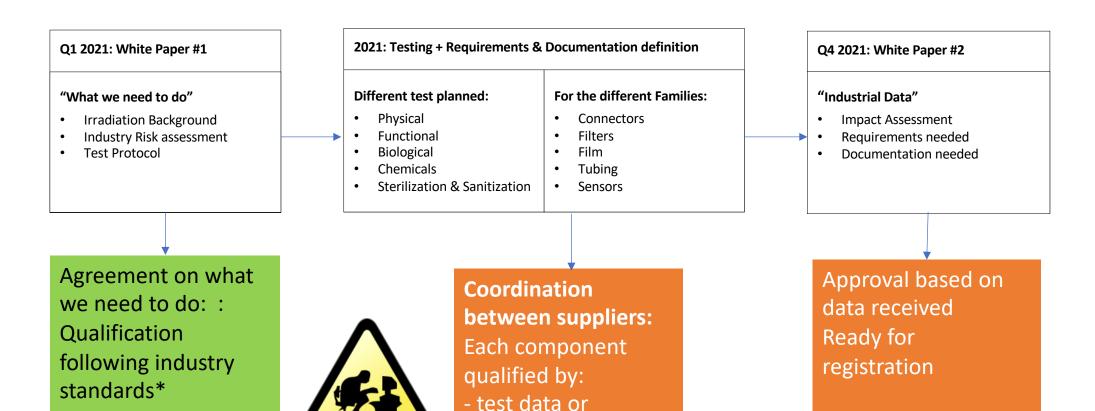
- ⁶⁰Co complex, regulated supply chain
- 3+ yrs production in nuclear reactors
- $T_{1/2} = 5.3 \text{ yrs} \rightarrow \text{Replace } 12\%/\text{yr}$
- Increasing demand highly consolidated
- Regulators pushing alternatives
- Costly, 24/7 utilization → demand inflexibility
- →Gamma-irradiation market strained and susceptible to risk
- → Bottle neck identified End users need to look for alternative such as X-ray

Single-Use Technology (SUT) Enable Bioprocesses


- SUT manufactured from wellcharacterized components
 - Aseptic connectors
 - Tubing
 - Film. Bags, mixers, bioreactors (up to 2000L)
 - Filters
 - Sensors
 - (small parts. tube fittings, gaskets, needles, etc)

We Only Succeed Together

Fittings, Gaskets


(Nordson QOSINA

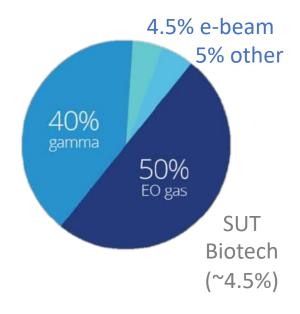
Logos are illustrative to indicate complex supply relationships. Information is not intended to be comprehensive or represent endorsement

Technical & Regulatory Considerations — BPSA Support

risk assessment

agreed with end user

* BPOG and BPSA for example



and qualification of multiple sterilization modalities

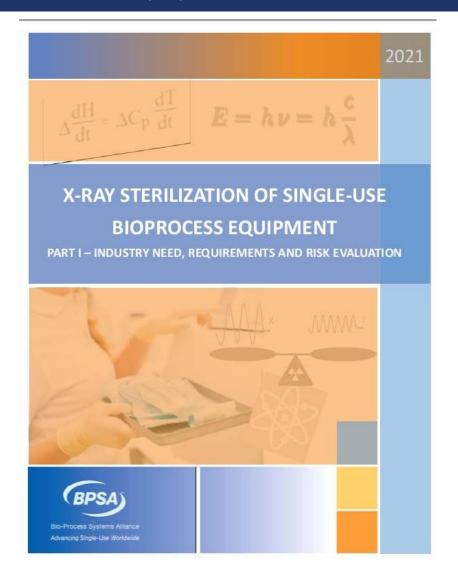
- BPSA. X-ray Sterilization Requirements (Sept 2020)
- Continuing the Conversation (Sept 2020)
- Steris. Fundamentals of X-ray Irradiation (Sept 2020)
- AAMI Supplement (Sept 2020)
- Medical Device Sterilization Conference (Oct 2020)
- NAS. Radiation Alternatives (Dec 2020)
- IBA. X-ray vs Other Modalities (2021)
- BPSA Paper. X-Ray Qualification for Single-Use (2021)

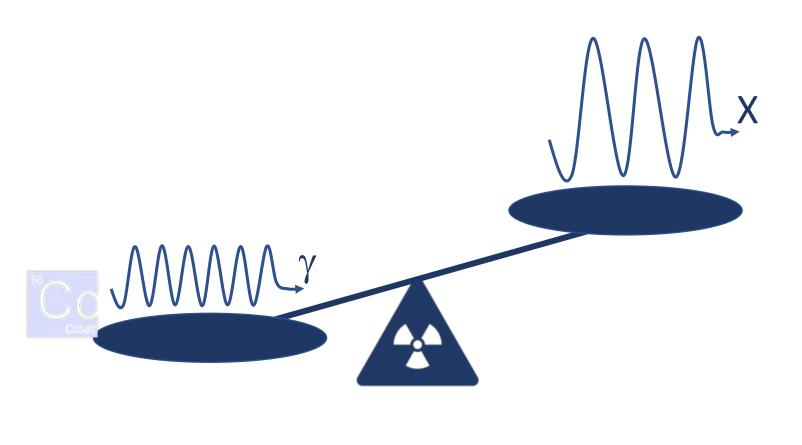
Intense Interest in X-ray Sterilization

and qualification of multiple sterilization modalities

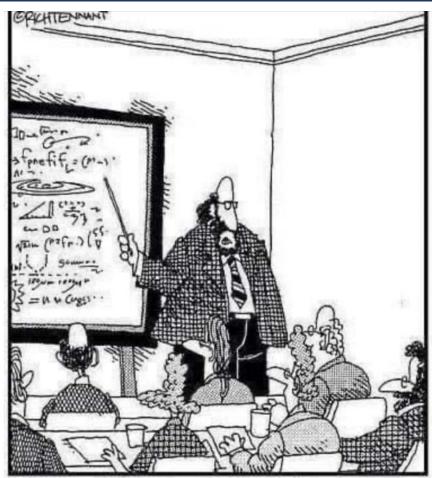
- BPSA. X-ray Sterilization
 Requirements (Sept 2020)
- Continuing the Conversation (Sept 2020)
- Steris. Fundamentals of X-ray Irradiation (Sept 2020)
- AAMI Supplement (Sept 2020)
- Medical Device Sterilization Conference (Oct 2020)
- NAS. Radiation Alternatives (Dec 2020)
- IBA. X-ray vs Other Modalities (2021)
- BPSA Paper. X-Ray Qualification for Single-Use (2021)

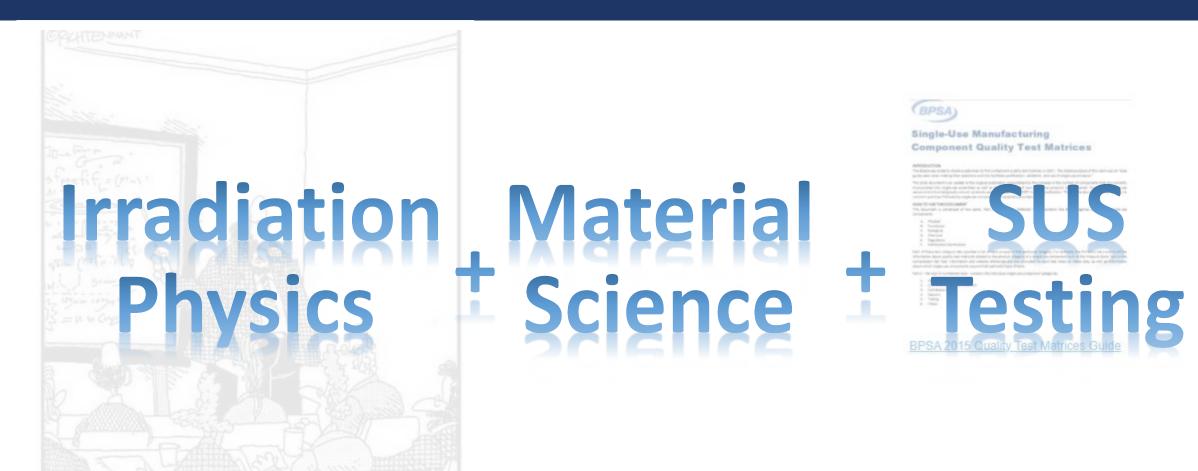
Commercial X-ray Sites Offering Capacity


- 2000 Hawaii (Food)
- 2001 Philadelphia (US Mail)
- 2010 Switzerland (Medical Device)
- 2021 Dallas, Northborough, Libertyville, Netherlands, Germany, ...


X-ray and Accelerator Technologies

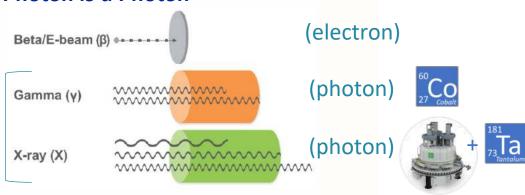
• Cost to add X-ray capability to an e-beam facility is <5%.


Hypothesis: X-ray is Equivalent and Can Supplement Gamma Irradiation Capacity



"Along with 'Antimatter,' and 'Dark Matter,' we've recently discovered the existence of 'Doesn't Matter,' which appears to have no effect on the universe whatsoever."

Comprehensive Risk Assessment Approach


Leads to a science-based, risk assessment and qualification approach without the need to repeat all data with gamma

Gamma and X-ray Irradiation

(BPSA)

Maturation of X-ray Sterilization

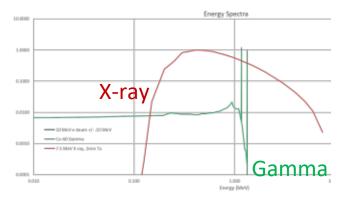
"A Photon is a Photon"

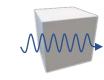
Gamma

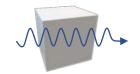
Directionality

X-ray

Dose Rate







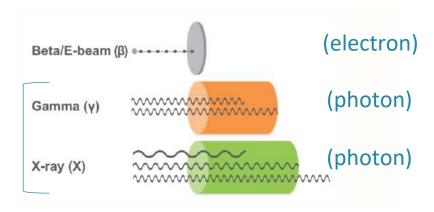
Overlapping Energy Spectra

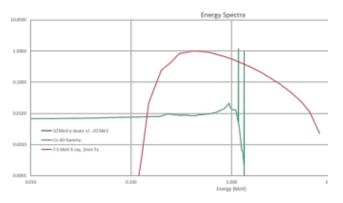
Penetration and Dose Uniformity

Temperature

Entire vault absorbs

Material under beam absorbs





Maturation of X-ray Sterilization

"A Photon is a Photon"

Overlapping Energy Spectra

Comparison of E-beam, Gamma, X-ray

	E-beam Boxes Gamma Pallets		X-Ray Pallets	
Able to Stop Sources Irradiation	Yes	No	Yes	
Product Penetration	Low	High	Very high	
Dose Uniformity Ratio	Average	Good	Excellent	
Dose Rate	Very high	Low	Medium	
Treatment Time	Seconds	More hours	Hours	
Cost Efficiency	Excellent	Good	Good	
Heat Development	~0.5 C/kGy ~25C	about max 20 C	Less than gamma and E-beam	
Oxidation Sensitivity	Small	More than E- beam & X-ray	Comparable to	
Market Adoption	Widely adopted	Widely adopted	New Technology	

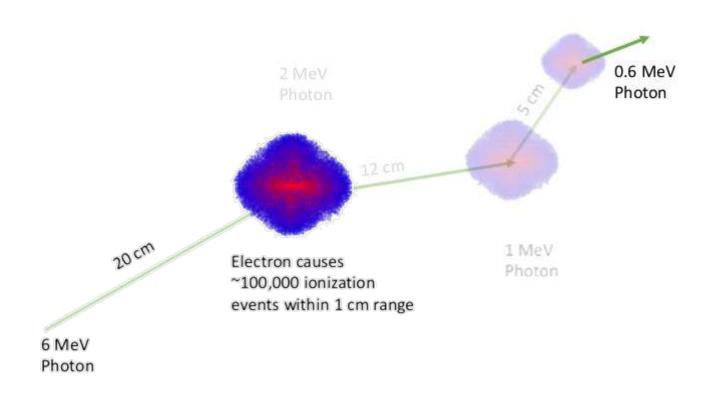
ISO 11137 Requirements for X-ray

www.irradiationpanel.org

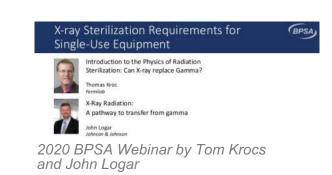
Change of Irradiation Modalities in Radiation Sterilization of Medical Devices

- Normative Requirements and Aspects in EN ISO 11137-1

Date: January 2020


Scope

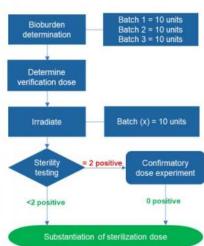
This paper has been proposed by the X-ray Working Group of the Irradiation Panel in order to summarize normative requirements in EN ISO 11137-1 when changing of radiation sterilization modalities, especially from gamma to X-ray, for radiation sterilization of medical devices.


Basically three points are of interest for a modality change and need to be evaluated:

- Radiation source. Assess potential for radioactivity in the product for X ray >5 MeV (~ 7 MeV is typical). Most materials covered by existing published guidances.
- Establishing/transferring the sterilizing dose.
 Addressed through dose verification studies (e.g. quarterly dose audits)
- Sestablishing/transferring the maximum acceptable dose. 'Guidance refers to dose rate and temperature during irradiation, with the remark that higher dose rates may lower the unwanted effects upon product.'

Photons Deliver Dose, Electrons Do the Killing

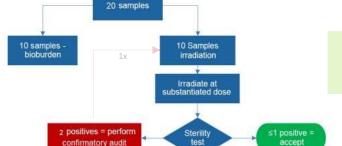
Electrons! They get the job done!


Sterility Verification

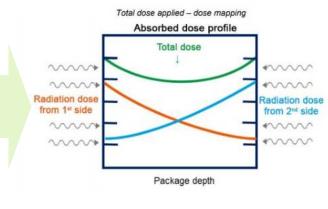
2 Transferring the Sterilizing Dose

Validation

VD max Substantiation Procedure: Validation (one off full validation test - 40 systems)


Transfer the dose

Verification (dose audit)



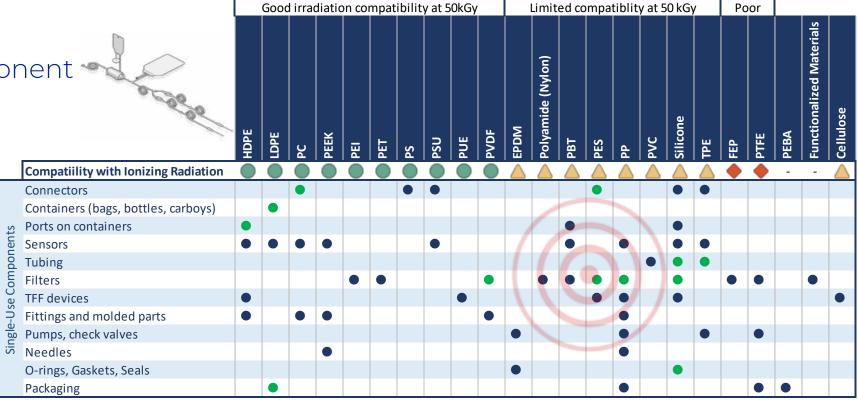
confirmatory audit

Reject

Dose Mapping

+10 systems

✓ Perform Dose Mapping



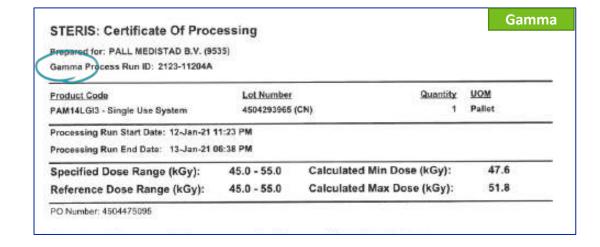
③ Transferring the Maximum Acceptable Dose (~50 kGy)

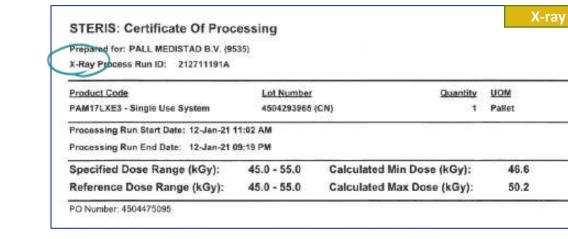
 Focus on polymers with limited irradiation compatibility (worst case)

 Couple material-science assessments with component testing

- Not retest every component.
- Demonstrate existing data packages remain valid for X-ray

Materials Impact Assessment


(BPSA)


③ Transferring the Maximum Acceptable Dose (~50 kGy)

amma

Irradiation physics Material Science SUS

Radiation Resistance of Polymers

Responses to radiation for different polymers intrinsically related to the chemical structures of the polymers

Sensors

Tubing (TPE, Silicone)

Filters

Aseptic Connectors

Risk assessment to highlight potential impact after X-rays vs gamma

Materials

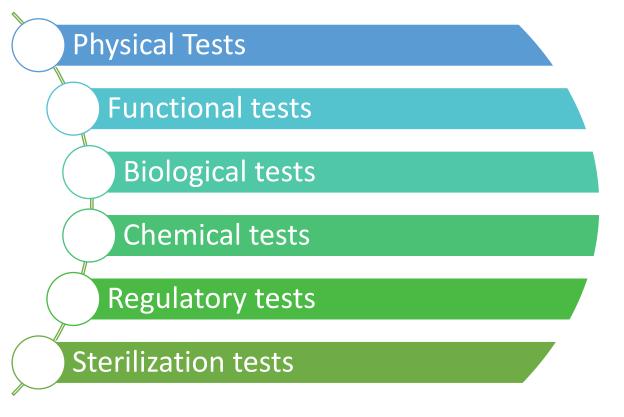
Components & sub-assemblies

Assemblies

Films & bags

Sensors

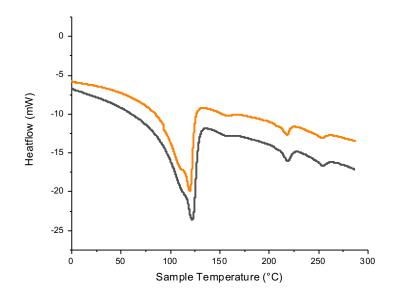
Eilters

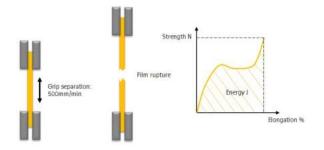

Connectors

Tubes

Identifying Materials & Component Tests that Best Assess the Risk

¹ Bio-Process Systems Alliance (BPSA), "Single-Use Manufacturing Component Quality Test Matrices," 2015. [Online]. Available: https://bpsalliance.org/technical-guides/.


A. PHYSICAL TESTS								
TEST TYPE	TEST REFERENCES	Connectors Valves Retainers	Containers & Film	Sensors	Tubing	Filters		
Pressure Burst Test	Manufacturer-defined method, ISO 7241, ASTM D1599, EN 12266, ISO 1402	•	-	•	•	•		
Integrity (Leak) Test	Manufacturer-defined method, ASTM E515 modified, ASTM D4991, ASTM 1003	0	0	•	0	0		
Tensile (Pull-Off) Test	Manufacturer-defined method	•	-	-	-	-		
Tear Resistance	ASTM D624, ISO 34, ASTM D1938-14	-	0	-	•	-		
O ₂ and CO ₂ Permeability	ASTM D3985, ASTM F1927, ISO 15105-2	-	•	-	-	-		
WVTR	ASTM F1249, ISO 15106	-	•	-	0	-		
Compression Set Test	ASTM D395, ISO 815	-	-	-	•	-		
Durometer (Hardness)	ASTM D2240, ISO 868	-	-	-		-		
Elongation	ASTM D412	-	-	-		-		
Tensile Strength	ASTM D882, ISO 527	-	•	-		-		
Material Color	Manufacturer-defined method	•		•	•	•		
Glass Transition Temperature by DSC	ASTM D3418, ISO11357-2	•	•	•	•	•		
Material by FTIR-ATR	Manufacturer-defined method	•		•	•	•		


NB: O: low risk, no testing | ●: low risk, testing nice to have | ●: medium risk, testing recommended | ●: high risk, testing required

Materials assessment

- Select representative materials
- Comparison between gamma and X-ray irradiated samples
- Time zero assessment
- Assess the materials properties and performances to verify materials equivalency after gamma and X-rays
- Starting point of further subassembly's and assembly's functionality evaluation
- Worse case dose, i.e. ~50 kGy

Functional Tests

Particle matter

Irradiation physics

Material Science

→ Particulates are not expected to be generated during irradiation

→ Link material testing outputs with the risk of particle generation

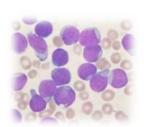
→ Representative samples might be tested in a preliminary study to bring evidence

Shelf life

Part of the risk assessment

Current shelf-life data after gamma will serve as a comparison standpoint

Sterility is part of the shelf-life evaluation


Biological tests

Biological reactivity.

Endotoxin levels.

→ Limited scope USP <87>/ISO10993-5 testing may be performed on some representative single-use materials

Chemical tests

Source: www.sartorius.com

Irradiation physics Material Science

The interaction of gamma and X-rays with matter is identical

By-products production mechanisms and levels are expected to be equivalent, and E&L levels thereof

No expected change of the chemical compatibility as no further degradation

Single-use assemblies

→ Junctions or system integrity

→ Representative packaged systems to verify sterility as a function of shelf life may be tested

Take away message

Assess the equivalency of functionality after gamma and X-ray:

- To keep current guides in regards to specifications and properties
- To keep current shelf life and sterility (e.g. SAL)
- To keep product compliance with standards and regulations

Not to repeat all product qualifications performed after gamma

Assess products with a scientific based test set

- Risk analysis
- Validate equivalency of material/component properties, i.e. connectors, tubing, filters, sensors, etc.
- Complete this evaluation with functional testing on representative assemblies
- Data on selected X-ray irradiated components to be published in a 2nd white paper

X-ray and Gamma Irradiation

- Both photon-based
- Same units (kGy)
- Covered by ISO 11137

Changing Modality from Gamma to X-ray

- Transfer sterilizing dose
 - Follow same process as for gamma
- Transfer maximum dose (~50 kGy)
 - Theory and limited data from medical device indicate X-ray equivalent to gamma
 - Existing data for max gamma dose applicable to X-ray

Path Forward

- Stakeholder awareness & engagement for industry-consensus approach
- Share verification X-ray data for
 - materials
 - components
 - single-use assemblies
- BPSA Part II "Show me the Data":

Q&A