

Wednesday, September 2, 2020 10:00-11:00 AM EDT

X-Ray Sterilization Requirements for Single-Use Equipment. It's Coming Sooner Than You Think! Featured Speakers Tom Kroc, Fermilab John Logar, Johnson & Johnson

Created in Cooperation With...

SOLUTIONS FOR SPECIALTIES

Flexible Vinyl Alliance

BPSA Sustaining Sponsors

- Growing demand for ionizing radiation, from multiple industries, including single-use (10%)
- γ-irradiation capacity difficult to increase, with largest irradiator expanding solely via x-ray

- Growing demand for ionizing radiation, from multiple industries, including single-use (10%)
- γ-irradiation capacity difficult to increase, with largest irradiator expanding solely via x-ray
- Highly consolidated contract irradiation market
- ⁶⁰Co regulated and costly. 24/7 utilization.
 Demand planning critical. Flexibility difficult

- Growing demand for ionizing radiation, from multiple industries, including single-use (10%)
- γ-irradiation capacity difficult to increase, with largest irradiator expanding solely via x-ray
- Highly consolidated contract irradiation market
- ⁶⁰Co regulated and costly. 24/7 utilization.
 Demand planning critical. Flexibility difficult
- BPSA publishing single-use risk assessment, testing rationale and supporting data

					co	MPONENT	CATEGOR	1Y		
	TEST TYPE	TEST REFERENCES	TEST ARTICLE	Chrome	Connectors & Valves	Containers & Film	Sensors	Tubing	Filters	•
	A. PHYSICAL TESTS									
	Integrity (Leak) Test	ASTM E515-11 modified ASTM D4991-94 Manufacturer defined method	Final Article	o	0	0	0	o	0	
sts		ASTM E1640-13	Final Article	-	o	o	0	0	0	
ăí		ISTA 2A	Final Article	-	0	-	-	-	-	
Ĕ	B. FUNCTIONAL TESTS		_				_			
- D	Water Flow Rate and Pressure Drop Test	ISO 7241-2 ISO 3968 Manufacturer defined method	Final Article	o	o	-	o	o	•	
q		IEC60534-2-3 DIN EN 1267 ASTM D4169-14	Final Article	-	o	-	-	-	-	
U	Package Testing/ Transportation Shipping Integrity	ASTM D4728-06 DIN ISO 2872 ISTA 2A	Final Article	o	o	o	o	o	o	
Ľ,	C. BIOLOGICAL TESTS									
Ś		ISO 10993-5								
Ø	Biological Reactivity - In Vitro	USP <87>	Raw Material	-	o	o	0	0	0	
trix		ISO 10993-1 USP <88> USP <88> ISO 10993-10		L.	nn	act	on		20	tics at
١a	Biołogical Reactivity - In Vivo	USP <88>	Raw Material		h	act				
\leq		USP <88> ISO 10993-6		h	igh	est	ir	rad	liat	tion dose
	D. CHEMICAL TESTS		_		חו	:		.		
Qualit	Chemical Process Compatibility	Manufacturer defined method typically aligned with ASTM D543-14 and/or risk assessment.	Raw Material and/or Final Article	 Risk mitigation score Testing planned 						
SA C	Extractables	Manufacturer defined method	Final Article] R	atio	วทส	ale	if	no testing
Δ_										
Ω	E REGULATORY TESTS	1								
	Animal Origin Free	EMA 410/01	Raw Materials	0	0	0	0	0	0	
	-	EMA 410/01		-	-	-	-	-	-	
	TSE BSE Statement	EC 1774	Raw Material	0	0	0	0	0	0	
	F. STERILIZATION AND	SANITIZATION TE	STS							
	Sterilization Process Compatibility	Manufacturer defined method	Final Article	-	o	o	0	0	0	

- Growing demand for ionizing radiation, from multiple industries, including single-use (10%)
- γ-irradiation capacity difficult to increase, with largest irradiator expanding solely via x-ray
- Highly consolidated contract irradiation market
- ⁶⁰Co regulated and costly. 24/7 utilization.
 Demand planning critical. Flexibility difficult
- BPSA publishing single-use risk assessment, testing rationale and supporting data
- Need education on the impact of x-ray vs gamma on plastics, and experience from medical device industry.

Figure 5: The superior penetration properties of X-ray allow for increases in the product loads sterilized.

X-ray Sterilization Requirements for Single-Use Equipment

Introduction to the Physics of Radiation Sterilization: Can X-ray replace Gamma?

Thomas Kroc Fermilab

X-Ray Radiation: A pathway to transfer from gamma

John Logar *Johnson & Johnson*

Panel Discussion

James Hathcock BPSA X-ray task group Pall Biotech

Samuel Dorey BPSA X-ray task group Sartorius Stedim Biotech

An Introduction to the Physics of Radiation Sterilization: Can X-ray replace Gamma?

Thomas Kroc, PhD

Applications Physicist for Technology Development Fermilab

What are we talking about?

- Ionizing Radiation
 - Electrons directly ionizing radiation
 - Photons indirectly ionizing radiation
 - X-ray and γ refer to how the photon is produced
 - But once produced, they are just photons

- Ionization → Sterility by disrupting the biologic processes of micro-organisms
 - SAL 10⁻⁶

Ionizing Radiation

Photons – X-ray vs γ

• γ rays originate from the nucleus of an atom

• X-rays originate from transitions in the electrons from an atom or Bremsstrahlung

• No difference other than their energy

Photons – X-ray vs γ

- Caveat
 - γ rays are more monoenergetic
 - X-rays (Bremsstrahlung) have a spectra of energies
- Fundamentally, a photon is a photon

Energy Spectra

 The broad spectrum of energies for x-rays is a minimal reason for concern that they may not be exactly equivalent to gamma from Co-60.

Photon Interactions with Atoms

Compton electron ≈ 0.5 MeV

Energy Deposition by Electrons

Electrons! They get the job done!

Radicals

Atoms, Radiation, and Radiation Protection

Table 13.3 G Values (Number per 100 eV) for Various Species in Water at 0.28 μ s for Electrons at Several Energies

	Electron Energy (eV)									
Species	100	200	500	750	1000	5000	10,000	20,000		
ОН	1.17	0.72	0.46	0.39	0.39	0.74	1.05	1.10		
H ₃ O ⁺	4.97	5.01	4.88	4.97	4.86	5.03	5.19	5.13		
e _{ao}	1.87	1.44	0.82	0.71	0.62	0.89	1.18	1.13		
H	2.52	2.12	1.96	1.91	1.96	1.93	1.90	1.99		
H ₂	0.74	0.86	0.99	0.95	0.93	0.84	0.81	0.80		
H ₂ O ₂	1.84	2.04	2.04	2.00	1.97	1.86	1.81	1.80		
Fe ³⁺	17.9	15.5	12.7	12.3	12.6	12.9	13.9	14.1		

If it requires ~100 eV to create an ion species, does it matter that the photon is 1.17, 1.33 MeV or 7.5 MeV?

Sidebar – Why do we limit the energy?

Electrons can't activate. They have to produce photons which would then knock out a proton or a neutron.

Most of what we irradiate doesn't activate below 10 MeV. Either the threshold is too high or the product is stable.

Tantalum has threshold At 7.577 MeV for γ,n and is stable for γ,p

	1	A	В	C	D	E	F	G	Н	1	J	K	1
ate.	1	concern threshol d > 10 MeV	Product Stable ?	Concern ?	Target	Product	Threshol d		half life (sec)	energy (MeV)	mode	isotopic abundanc e	Webelement s elemental abundance (ppm)
ce	2				H-1							99 985	1500
	3				H-2	H-1	2 225	(v n)				0.015	0.15
Ч	4		1	1	H-2	n	2.242	(q.y)	660	0.782	beta		
u	5				110-3	?	7.72	(v.n)				0.00013	
	6		2 2 2		He-3	H-2	5.49	(y.p)					
oton	7		÷		He-4	He-3	20.58	(v.n)				99,9999	
	8		1		He-4	H-3	19.81	(v.p)	3.86E+08	1.86E-02	beta		
	9				Li-6	Li-5	5.66	(y.n)	1.00E-21		110001000000	7.42	17
	10				Li-6	He-5	4.59	(y.p)	2.00E-21			X-545-	0.0017
	11				Li-7	Li-6	7.25	(y,n)				92.58	
	12				Li-7	He-6	9.97	(y,p)	0.82				
	13				Be-9	Be-8	1.66	(y,n)	1.00E-14			100	1.9
	14				Be-9	Li-8	16.87	(y,p)	0.85				0.00019
	15				B-10	B-9	8.44	(y,n)	3.00E-19			18.8	8.7
	16				B-10	Be-9	6.59	(y,p)					0.00087
	17				B-11	B-10	11.46	(y,n)				81.2	
	18				B-11	Be-10	11.23	(y,p)	8.52E+13				
	19				C-12	C-11	18.72	(y,n)	1.23E+03			98.89	1800
	20	-			C-12	B-11	15.96	(y,p)					0.18
	21				C-13	C-12	4.95	(y,n)				1.11	
	22				C-13	B-12	17.53	(y,p)	0.027				
	23				N-14	N-13	10.55	(y,n)	6.06E+02			99.63	20
	24				N-14	C-13	7.55	(y,p)					0.002
	25				N-15	N-14	10.83	(y,n)	a sugar			0.37	
	26				N-15	C-14	10.21	(y,p)	1.81E+11				
	27				0-16	0-15	15.66	(y,n)	124			99.76	460000
	28				0-16	N-15	12.13	(y,p)					46
	29				0-17	0-16	4.14	(y,n)				0.04	
	30		8		0-17	N-16	13.78	(y,p)	7.2				
	31				0-18	0-17	8.04	(y,n)	-			0.2	
	32	6 3	<u>k </u>		0-18	N-17	15.94	(y,p)	4.16			-	
	33				Ta-180	Ta-179	6.645	(y,n)				0.01	1.7
	34				Ta-180	Hf-179	5.75	(y,p)					0.00017
noia	35		-		Ta-181	Ta-180	7.577	(y,n)				99.99	
	36				Ta-181	Hf-180	5.94	(y,p)	Observat	ionally Sta	able		
า	37				W-180	W-179	8.412	(y,n)	_			0.1	1.1
•	38		_		W-180	Ta-179	6.57	(y,p)					0.00011
	39	_	0:		W-182	W-181	8.063	(y,n)				26.3	
	40		فيسسها		W-182	18-181	7.09	(y,p)					
	41				W-183	W-182	6.191	(y,n)	-			14.3	
	42				W-183	18-182	7.410	(V,P)	-			00.7	
	45				W-184	Tp. 192	7.412	(y,n)	-			50.7	
	44	-		-	W-184	W-185	7 105	(4.0)				20 6	
nce.org	45				W-186	Ta-185	8.4	(y,n)	-			20.0	
	and the second sec												

IAEA-TECDOC-1287 Natural and induced Radioactivity in food

Concern about the product

Concern about the employees

Penetration

 The penetration characteristics of x-ray can be exploited to give better DUR.

2020 Bio-Process Systems Alliance • bpsalliance.org

Generating X-rays

• Generating x-rays will always incur a significant inefficiency. Overcoming this requires high-power electron beams.

Generating X-rays

- Much more directed than gammas from a cobalt array. Better utilization.
- (Only ~ 30 % of gamma rays are utilized)

Power

- 1 Mci = 3.7x10¹⁶ decays/second
 - Total energy released 2.505 MeV/decay
 - 15 kW
 - Typical irradiation bunker 30-60 kW of "beam" power
- Electron beam machines can provide this easily
- X-ray must overcome inefficiency of Bremsstrahlung process
 - 200 400 kW of electron beam power
 - Then must include efficiency of electron beam production

Capacity Considerations

• Gamma

- ~10 kGy/hr
- 3.4 m³/h/MCi @ 25 kGy
- Electron Beam
 - ~20 MGy/hr
- X-ray
 - ~60 kGy/hr
 - 2.8 m³/h/100 kW @ 25 kGy (including target losses)

1 MCi gamma ≈ 120 kW X-ray

Follow up

https://iarc.fnal.gov/virtualworkshop2020/

Registration open until September 12

X-Ray Radiation: A pathway to transfer from gamma

John Logar

Sr. Director, Aseptic Processing and Terminal Sterilization J&J Microbiological Quality and Sterility Assurance

Johnson & Johnson

This presentation is intended for educational purposes only and does not replace independent professional judgment.

Statements of fact and opinions expressed are those of the participant individually and, unless expressly stated to the contrary, are not the opinion or position of Johnson & Johnson or its affiliates.

Interactions Through Materials

- <u>Dominate interaction mechanism is Compton</u> <u>scattering for both to impart dose</u>
- At each of these few and far between interactions there is a large energy transfer to an electron as part of ionization
- These secondary electrons lose energy in small increments as part of tens of thousands of ionization events in small regions
- Initial photon energy determine the energy and number of secondary electron per photon
- Fewer high-energy photons needed for given required dose

2020 Bio-Process Systems Alliance • bpsalliance.org

6 MeV Photon

6 MeV Photon

2020 Bio-Process Systems Alliance • bpsalliance.org

Photon

2020 Bio-Process Systems Alliance • bpsalliance.org

Accumulation of Dose

- For both photon sources, in the range of **quadrillions** of these photons generated **every second**
- Each photon has probability of interaction with product

Approximate Values

	<u>Gamma</u>	Xray
Radiation Type	Photon	Photon
Source of Radiation	Within Nucleus	Outside Nucleus
Energy per Photon	1.25 MeV	0 - 7 MeV
Average Range per Photon	~20 cm	~40 cm
Primary Interaction	Compton Scattering	Compton Scattering
Direct Ionizations per Photon	~10	~20
Indirect Ionizations per Photon	~25,000	~125,000
Average Range per Secondary Electron	~0.1 cm	~1 cm
Total Ionizations per Photon	~25,000	~125,000

- Final doses delivered controlled by time/total photons
- Cumulative ionizations confirmed via dosimetry
- More gamma rays generally needed for equivalent dose

~5 gamma rays same as 1 x-ray

X-RAY PHOTON ENERGY DISTRIBUTION

 Photons of varying energy (up to the maximum for the system) are generated

Risk Assessment Approach

Regulatory Approach: Risk Assessment

- Focus on a risk assessment between specification requirements for gamma and X-ray radiation
 - Assess cross linking requirements for materials
- The X-ray risk assessment can be based on the potential differences between the process conditions which are as follows:
 - Dose distribution
 - Example Confirm routine dose requirements can be achieved robustly and within established ranges for the existing (gamma) process
 - Activation of materials
 - Example Perform activation to confirm below regulatory threshold
 - Temperature profile
 - Example Confirm less extreme than existing (gamma) process
 - Dose rate
 - Example Confirm dose rates will be higher and thus lower material impact than existing (gamma) process
- Should any of the above assumptions be proven false, an assessment needs to be performed to determine what testing is required

Dose Distribution

- Improved results expected due to subset of higher energy X-rays
- Dose mapping always required for each

Uniform Symmetric Map Grid

Can be a Mini Grid/Reduced Grid based on OQ

Full Volume Design Capacity

Actual / Surrogate Product

Activation Studies

- All radiation has potential to create radioactive materials regulatory requirement to assess risk
- Products are typically assessed as part of contractor procedure
 - Testing likely to be reduced/eliminated once more data is generated
- All materials need to be under IAEA limits for induced radioactivity per 'Safety Guide No. RS-G-1.7' published 2004
 7. Acceptance criteria

 The target radiation dose is met as indicated by the dosimetry results.
 Activation acceptance is defined as compliance with the appropriate international limits e.g. Swiss limits for "consumer goods" (LE/100, Radiological Protection Ordinance, Annex 3) with activity con

	Activity [Bq]					
Nuclid	Max. measured Activity	Max Ac- tivity				
CR-51	13.3	100000				
Co-60	5.6	10000				
Mo-99	2.0	10000				
W-187	535	10000				
Pt-191	2.1	10000				

centrations and detection limits referred to the start of the measurement.

Temperature

• Similar facilities in similar climate tracked temperature during a year

Gamma Irra	diation Ten	nperature	
Month	Min	Max	
1/1	26.5	42.8	
2/1	37.9	45.5	
3/1	35.2	44	
4/1	37.1	44.2	
5/1	37	44	
6/1	40.5	50	
7/1	40.5	50	
8/1	39.2	48.8	
9/1	33.8	46.5	
10/1	34.9	43.2	
11/1	33.4	42.1	
12/1	34.8	42.5	

X-Ray Irrad	liation Tem	perature	
Month	Min	Max	
J	16	21.2	
F	15	20.5	
Μ	19.2	23.3	
A	21.9	25.6	
М	22	26.8	
J	24.3	32.5	
J	26.5	32.7	
A	24.8	30.9	
S	23.7	29.5	
0	21.1	26.8	
Ν	18	23.9	
D	20	23.9	

Dose Rate

- Dose rate is dependent on source (cobalt activity or power) and product conveyance
- Initial review shows roughly 3-4x greater average dose rate via X-Ray
- X-ray dose accumulation is only in front of the scan horn

Recommendations for Transfer to X-ray

- This can add flexibility to the regulatory process and future supply chain
- Minimum cost and timing during the development process for speed to market
- Perform assessment at a sterilization facility
 - Dose distribution
 - Activation
 - Minimum dose establishment
 - Maximum dose establishment
- Implement regulatory submission strategy based around risk approach, and not specific to an individual sterilization facility or sterilization modality (Gamma and X-Ray)

Questions?

Introduction to the Physics of Radiation Sterilization: Can X-ray replace Gamma?

Thomas Kroc Fermilab

X-Ray Radiation: A pathway to transfer from gamma

John Logar Johnson & Johnson

Panel Discussion

James Hathcock BPSA X-ray task group *Pall Biotech*

Samuel Dorey BPSA X-ray task group Sartorius Stedim Biotech

BPSA Sustaining Sponsors

Created in Cooperation With...

SOLUTIONS FOR SPECIALTIES

Flexible Vinyl Alliance

2020 Speaker Series Upcoming Webinars

September 23, 2020 10:30-11:15 AM EDT

October 21, 2020 10-11:15 AM EDT

Overview of BPSA's technical guide, *Extractables/Leachables Considerations for Cell & Gene Therapy Drug Product Development*

Building an Integrity Assurance Approach in Single-Use Processing through the SUS Whole Life Cycle